Direkt zum Inhalt

Schlichting!: Weinender Wein

Schwenkt man ein alkoholisches Getränk im Glas, rinnen an dessen Innenwand Tropfen herab. Sie entstehen, weil verdunstender Alkohol einen dünnen Film aus der Flüssigkeit in Form einer instabilen Stoßfront hochsaugt.
Kirchenfenstereffekt: Ein aufsteigender Weinfilm sinkt verwässert in Form von Tränen ins Glas zurück.Laden...

Weintrinker schwenken ihr Glas, um die Aromen besser zur Geltung zu bringen. Dabei bilden sich an der Innenseite Tropfen, die in das Getränk zurück­fließen. Das Phänomen ist vielen Genießern vertraut und erlaubt gewisse Rückschlüsse auf die Konzentrationen der enthaltenen Stoffe – es ist beispielsweise besonders bei Hochprozentigem gut zu beobachten. Da die entstehenden Figuren ein wenig an Kirchenfenster erinnern, werden sie zuweilen auch so genannt.

»Wie oft ein Glas Wein ein System erzeugt«
(Georg Christoph Lichtenberg 1742–1799)

Dass Wein auf diese Weise regelrecht Tränen vergießt, ist seit Langem bekannt. Der englische Physiker Charles Vernon Boys (1855–1944) ging in seinem früher sehr populären Buch über Seifenblasen sogar davon aus, die Erscheinung würde bereits »in den Sprüchen Salomons Kapitel 23, Vers 31 erwähnt: Siehe den Wein nicht an, wenn er rot ist, wenn er seine Farbe dem Glase gibt, und wenn er von selbst aufwärts steigt.« (In der deutschen Bibelübersetzung Luthers lautet die entsprechende Stelle etwas anders.)

Ein einfaches Gemisch erzeugt komplexe Wechselwirkungen

Die erste physikalische Erklärung lieferte James Thomson (1822–1892) Mitte des 19. Jahrhunderts, doch die Details des Alltagsphänomens beschäftigen die Wissenschaft bis heute. Im März 2020 hat eine Forschergruppe um die Mathematikerin Andrea Bertozzi von der University of California in Los Angeles eine Arbeit dazu publiziert. Die Untersuchung bezieht die Geometrie des Glases ein und soll eine vollständige quantitative Beschreibung der Tränen liefern. Das Phänomen wirkt auf den ersten Blick einfacher, als es tatsächlich ist. Zum Verständnis ist es nötig, das Wechselspiel vielfältiger physikalischer Aspekte zu entwirren.

Hinter vielen alltäglichen Dingen versteckt sich verblüffende Physik. Seit vielen Jahren spürt Hans-Joachim Schlichting diesen Phänomenen nach und erklärt sie in seiner Kolumne der Leserschaft von »Spektrum der Wissenschaft«. Schlichting ist Professor für Physik-Didaktik und arbeitete bis zu seiner Emeritierung an der Universität Münster.

Zunächst kommt die Tendenz bestimmter Flüssigkeiten ins Spiel, Flächen zu benetzen. Schaut man sich ein Glas mit Wasser darin etwas genauer an, erkennt man, wie Letzteres ein Stück weit an der Wand aufsteigt und einen typischen konkaven Meniskus hervorbringt. Das passiert, weil zur Ausbildung einer Grenzfläche zwischen zwei Substanzen Grenzflächenenergie nötig ist. Die Natur tendiert dazu, diese möglichst gering zu halten, und bei Wasser und Glas ist weniger Energie erforderlich als im Fall von Luft und Wasser.

Der Weg nach oben endet allerdings bald: Der Energie­gewinn infolge des Anhaftens wird durch die potenzielle Energie, die das Medium nach unten zieht, mit zunehmender Höhe aufgewogen. Der Vorgang heißt auch Kapillareffekt. Wenn man nämlich das Glas auf ein Röhrchen mit winzigem Durchmesser verengt, reduziert das die anzuhebende Masse der Flüssigkeitssäule enorm, und das Wasser kann weiter steigen. In Bäumen spielt das eine wesentliche Rolle beim Transport von der Wurzel bis in die Blätter.

Wenn der Weingeist am Meniskus zieht

Wein und andere alkoholische Getränke bestehen vor allem aus Wasser und Alkohol sowie einigen für den Geschmack entscheidenden Stoffen. Beide Flüssigkeiten gehen zwar eine homogene Mischung ein, verhalten sich aber in physikalischer Hinsicht unterschiedlich. Alkohol verdunstet wesentlich bereitwilliger, hat also eher die Tendenz, in den gasförmigen Zustand überzugehen. Das ist unter anderem auf die größere Grenzflächenspannung des Wassers zurückzuführen, die der Verdunstung entgegenwirkt. Der Alkohol verfliegt daher früher – das wird bei der Destillation zum Abtrennen des »Weingeistes« ausgenutzt.

Der Prozess läuft in der dünnen Schicht an der Glaswand besonders stürmisch ab. Dort ist die Grenzfläche zwischen Luft und Wein im Verhältnis zum Volumen sehr groß, und der Anteil des Wassers nimmt rasch zu. Dessen Anreicherung wiederum steigert die Grenzflächenspannung im Flüssigkeitsfilm.

Zur Verdunstung ist Energie nötig, die der Umgebung entzogen wird, also vor allem dem Wein selbst. Damit ist eine Abkühlung verbunden. Einen lebhaften Eindruck von der Verdunstungskälte kann man sich verschaffen, indem man einen Tropfen Alkohol auf dem Handrücken verteilt und die Hand schwenkt oder anbläst. Die Grenzflächenspannung nimmt mit sinkender Temperatur zu, was zusätzlich zum Spannungsunterschied zwischen dem dünnen Film und dem übrigen Wein beiträgt.

Das führt zu Ausgleichsströmungen: In dem Maß, in dem vor allem der Alkohol verdunstet, wird Wein aus dem Glas nachgezogen. Der Effekt ist nach dem italie­nischen Physiker Carlo Marangoni (1840–1925) benannt, der ihn schon im 19. Jahrhundert eingehend studiert hat. Jedoch war bislang noch nicht geklärt, wie der Prozess im Einzelnen abläuft. Denn stiege die Flüssigkeit in einem Film von einheitlicher Dicke auf, wäre nicht einzusehen, wieso sie nicht einfach ähnlich gleichmäßig wieder zurückfließen sollte – statt es in Form von Tränen zu tun.

Eine ungewöhnliche Stoßfront

Bertozzi und ihre Kollegen haben nun mit einem mathematischen Modell und Experimenten eine Lösung des Problems gefunden. Sie gehen unter anderem davon aus, dass die Grenzflächenspannung mit der Höhe des Films gleichmäßig zunimmt. Dann bewegt sich die Flüssigkeit in einer ringförmigen Welle nach oben. Dabei handelt es sich – in wissenschaftlicher Terminologie – um eine »umgekehrte unterkompressive Stoßwelle«. Trotz der äußeren Ähnlichkeit mit einer normalen Stoßwelle lässt hier das anhaltende Ziehen infolge der Marangoni-Strömung das Gebilde instabil werden.

Illustration der physikalischen Effekte an der Innenseite eines WeinglasesLaden...
Verdunstungsantrieb | Adhäsion zieht Wein am Glasrand hoch, dem wirkt die Schwerkraft entgegen, und ein Meniskus bildet sich aus. Darüber hinaus benetzt nach dem Schwenken eine dünne Schicht die Innenwand, an der entlang verdunstender Alkohol eine Stoßwelle nachzieht.

Innerhalb der Schicht rücken einzelne Fronten nach, die von der Grenze zum Weinmeniskus ausgehen. Sie laufen gegen die bereits an der Glaswand befindliche, mit Wasser angereicherte Flüssigkeit an. Dann lassen kleinste Inhomogenitäten entlang der Welle diese an solchen Stellen zerreißen. Um die Grenzflächenenergie zu minimieren, ziehen sich die Bruchstücke sofort zu separaten Tropfen zusammen, die wie Tränen am Rand herabfließen. Das Szenario wiederholt sich, solange ausreichend Alkohol im Wein ist. Angetrieben werden diese Vorgänge letztlich durch die Tendenz von Flüssigkeiten, sich durch Verdunstung gleichmäßig im zur Verfügung stehenden Raum zu verteilen. Sofern wir sie nicht daran hindern, indem wir sie vorher konsumieren.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Quellen

Dukler, Y. et al.: Theory for undercompressive shocks in tears of wine. Physical Review Fluids 5, 2020

Partnerinhalte