Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Mathematik: Das Dreikörperproblem

Obwohl Forscher seit Jahrhunderten wissen, dass es unmöglich ist, die Flugbahnen dreier sich gegenseitig anziehender Objekte zu berechnen, birgt das Dreikörperproblem dennoch einige Überraschungen. Indem sich Mathematiker auf einzelne Aspekte des Themas konzentrieren, machen sie faszinierende Entdeckungen.
Korona der Sonnenfinsternis

Im Frühjahr 2014 hatte ich die Hoffnung weitestgehend aufgegeben, eine Antwort auf mein mathematisches Problem zu finden. Aus Mangel an Ideen begann ich, näherungsweise Lösungen am Computer zu berechnen. Natürlich würde ich so niemals meine Frage beantworten, aber ich hoffte, dass die Ergebnisse auf einen zielführenden Weg deuten würden.

Leider bin ich kein Programmierexperte. Mir dauerte alles zu lange und ich wurde immer ungeduldiger – wodurch ich alles verschlimmerte. Für einen Mathematiker wie mich, der sonst nur mit Stift und Papier arbeitet, entwickelte sich das Ganze zu einer sehr unangenehmen Erfahrung. Deshalb beschloss ich, in diesem Herbst zu meinem Freund Carles Simó an die Universität Barcelona zu reisen, um ihn zu bitten, mich bei meiner unbeholfenen Suche zu unterstützen.

Simó gilt als einer der erfinderischsten Experten für numerische Analysis. Zudem verschwendet er keine Zeit damit, um den heißen Brei herumzureden. An meinem ersten Nachmittag in seinem Büro schilderte ich ihm mein Problem. Daraufhin sah er mich mit seinen durchdringenden Augen an und fragte: »Warum interessierst du dich überhaupt dafür?« Das war wie ein harter Schlag ins Gesicht – schließlich hatte ich dieser Aufgabe bereits 17 Jahre lang den Großteil meiner Zeit geopfert …

Kennen Sie schon …

Sterne und Weltraum – Raumzeit: Experimente zur Quantennatur

Die Relativitätstheorie Albert Einsteins ist das Meisterwerk zur Beschreibung der Schwerkraft. Seit Jahrzehnten steht aber die Frage im Raum, ob die Gravitation auf submikroskopischen Längenskalen modifiziert werden muss. Gibt es quantenhafte Austauschteilchen, die Gravitonen? In unserem Titelbeitrag stellen wir Überlegungen vor, wie man experimentell eine Quantennatur der Raumzeit testen könnte. Im zweiten Teil unseres Artikels zur Urknalltheorie beleuchten wir alternative Ansätze zur Dunklen Energie: das Local-Void- und das Timescape-Modell. Außerdem: Teil zwei unserer Praxistipps für die Astrofotografie mit dem Smartphone – Mond und Planeten im Fokus, die Ordnung im Chaos des Dreikörperproblems und woher stammen erdnahe Asteroiden?

Spektrum der Wissenschaft – Eine Theorie von allem: Lassen sich Quantenphysik und Schwerkraft vereinen?

Lassen sich Quantenphysik und Schwerkraft vereinen? In der aktuellen Ausgabe der PMT haben wir Beiträge für Sie zusammengestellt, in denen Forscherinnen und Forscher über die Ergebnisse ihrer Suche nach einer fundamentalen Theorie unserer Welt berichten. Entstanden ist eine erkenntnisreiche Sammlung an Beiträgen über die Quantennatur der Raumzeit, denkbaren Experimenten zum Nachweis von Gravitonen, Schwarzen Löchern, der Theorie der Quantengravitation, teleparalleler Gravitation und vielem mehr. Lesen Sie, welche Fortschritte es in den letzten Jahren gab, die Gesetze der Quantenwelt mit den geometrischen Konzepten von Raum und Zeit zu vereinigen, und welche Hürden dabei noch zu überwinden sind.

Spektrum - Die Woche – Mit Weltraumtechnik die Meere aufforsten

Was hat Raumfahrt mit Fischerei zu tun? In der aktuellen »Woche« erfahren Sie, wie Forscher mit Robotern aus der Weltraumtechnik die europäischen Meere aufforsten. Außerdem: wie genetische Vielfalt unser Getreide widerstandsfähiger macht – und welchen Beitrag Bier zur Zahngesundheit leisten kann.

  • Quellen

Chenciner, A. et al.:Simple choreographic motions of N bodies: Preliminary study. In: Newton, P. et al. (Hg.): Geometry, mechanics, and dynamics. Springer, 2002

Chenciner, A., Montgomery, R.:A remarkable periodic solution of the three-body problem in the case of equal masses. Annals of Mathematics 152, 2000

Moeckel, R., Montgomery, R.:Realizing all reduced syzygy sequences in the planar three-body problem. Nonlinearity 28, 2015

McGehee, R.:Triple collision in the collinear three-body problem. Inventiones mathematicae 27, 1974

Sundman, K.:Mémoire sur le problème des trois corps. Acta Mathematica 36, 1912

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.