Zahlentheorie: Trio teilt Zahlen in zwei Lager
Anfang 2022 waren drei Mathematiker gerade dabei, ein gemeinsames Forschungsprojekt abzuschließen, als zwei von ihnen – unabhängig voneinander – an Covid-19 erkrankten. Die meisten Menschen würden unter solchen Umständen eine Pause einlegen. Aber das dritte Teammitglied, Manjul Bhargava von der Princeton University, hatte anderes im Sinn. Um seine Kollegen Levent Alpöge von der Harvard University und Ari Shnidman von der Hebräischen Universität Jerusalem von ihren Symptomen abzulenken, schlug er vor, ihre wöchentlichen Zoom-Sitzungen auf drei- oder viermal pro Woche zu erhöhen. Die Quarantäne, so erkannten die drei, könnte eine Gelegenheit sein, ungestört zu denken. Und es sollte sich lohnen: Das Trio erzielte einen bedeutenden Fortschritt bei einem Problem, das Mathematiker seit Jahrhunderten plagt.
Es betrifft eines der ältesten Fragen der Zahlentheorie: Welche natürlichen Zahlen lassen sich als Summe zweier Kubikzahlen von Brüchen (rationale Kubikzahlen) schreiben? Sechs ergibt sich zum Beispiel aus der Addition von (17⁄21)3 + (37⁄21)3. Fachleute vermuten, dass sich etwa die Hälfte aller natürlichen Zahlen auf diese Weise darstellen lässt. Damit gäbe es zwei Lager: Jene Werte, die sich als solche Summe ausdrücken lassen, und der Rest, bei denen das nicht möglich ist.
Bisher konnte das allerdings niemand beweisen. Schlimmer noch: Man konnte nicht einmal den Anteil der Zahlen eingrenzen, die eine Summe von zwei rationalen Kubikzahlen sind …
Schreiben Sie uns!
Beitrag schreiben