Direkt zum Inhalt

»Schwarze Löcher«: An den Grenzen der Welt und der Physik

Die Erforschung Schwarzer Löcher könnte der Schlüssel zu einer allumfassenden Theorie der Physik sein. Brian Cox und Jeff Forshaw vermitteln dies eindrucksvoll.
Eine helle Illustration eines Schwarzen Lochs

Schwarze Löcher faszinieren jeden. Für die meisten Menschen ist es das angenehme Gruseln, das der Begriff erzeugt: Wie kann es sein, dass man in einem Schwerkraftschlund verschwinden kann, aus dem es keine Rückkehr gibt? Für Astronomen und Physiker ist es dagegen das Wissen, dass wir Schwarze Löcher noch nicht vollständig verstehen können. Bei ihrer Beschreibung kommen das Konzept der Gravitation und die Quantenphysik zum Einsatz; zwei nicht kompatible Theorien, die aber doch beide experimentell so gut gesichert sind, dass sie als gültig betrachtet werden können. Damit bergen Schwarze Löcher vielleicht den Schlüssel zu einer allumfassenden Theorie der Physik, die ein Verständnis des Universums ermöglicht. Es lohnt sich also, sich mit den gruseligen kosmischen Gesellen auseinanderzusetzen.

Während für viele Jahrzehnte Schwarze Löcher zunächst einmal als theoretische Konstrukte galten, nach denen man im All suchen muss, kann man heute den Gedankengang umdrehen: Schwarze Löcher sind spätestens seit dem Physik-Nobelpreis 2020 für Roger Penrose, Reinhard Genzel und Andrea Ghez zu einer Realität für Beobachter geworden, so dass man heute fragen kann: Was passiert um die und in den Schwerkraftmonstern? Und so führen die Autoren im ersten Kapitel auch die Schwarzen Löcher ein – über die Beobachtungen. Im zweiten Kapitel erklären sie die Grundzüge der allgemeinen Relativitätstheorie, um dann im dritten Kapitel das wesentliche Werkzeug für alle folgenden Kapitel einzuführen: Penrose-Diagramme. Diese stark verzerrten Raumzeitdiagramme bilden die gesamte, in Raum und Zeit unendlich weit reichende Raumzeit kompakt ab. Da Unendlichkeiten so ins Endliche rücken, eignen sich diese Diagramme besonders gut, um Ereignishorizonte und Singularitäten abzubilden – notorische Unendlichkeiten in Schwarzen Löchern. Die Didaktik ist in diesem Kapitel besonders gelungen, denn die Autoren erklären sehr ausführlich und erläutern etwa das Zwillingsparadoxon im Penrose-Diagramm.

Warum Schwarze Löcher nicht ganz schwarz sind

Erstaunlicherweise ist ein einfaches Schwarzes Loch in einem Penrose-Diagramm nicht mehr als ein weiterer Halbraum – getrennt vom Rest des Universums durch den Ereignishorizont. Kapitel vier bis sieben diskutieren dies und klären auch eine der vermutlich brennendsten Fragen, nämlich wie man sich den Fall in ein Schwarzes Loch vorstellen muss. Außerdem versteht man so auch Wurmlöcher (für die es keine experimentellen Hinweise gibt) und rotierende Schwarze Löcher auf elegante Weise. In Kapitel acht geht es dann um die Überlegungen von Roger Penrose dazu, wie sich aus realen Körpern ohne perfekte Symmetrie, beispielsweise aus Sternen, Schwarze Löcher bilden können – dafür erhielt Penrose seinerzeit den Nobelpreis.

Dass Schwarze Löcher doch nicht ganz schwarz sind, wird dann in den Kapiteln neun und zehn erläutert. Die Fläche eines Schwarzen Lochs entspricht seiner Entropie, und seine Temperatur ist über die oftmals erwähnte, aber bislang unbeobachtete Hawkingstrahlung (nach Stephen Hawking, 1942–2018) definiert. Bereits hier werden Verbindungen zur Quantenmechanik deutlich, wenn es beispielsweise um das Zählen von möglichen Informationseinheiten auf der Oberfläche eines Schwarzen Loches geht oder um den Informationsverlust, der eintritt, wenn etwa ein Buch für immer hinter dem Ereignishorizont eines Schwarzen Lochs verschwindet.

Die letzten fünf Kapitel sind schließlich dem quantenmechanischen Blick auf Schwarze Löcher gewidmet. Dieser gipfelt in einer höchst erstaunlichen Korrespondenz, die ähnlich zauberhaft wie ein Hologramm ist: In einer sogenannten Anti-de-Sitter-Raumzeit (nach Willem de Sitter, 1872–1934), also einer anderen Geometrie als der des echten Universums, kann man mathematisch analog Schwarze Löcher definieren. Der argentinische Physiker Juan Martín Maldacena hat 1997 gezeigt, dass die Raumzeit mit der Gravitation der Anti-de-Sitter-Welt vollkommen äquivalent ist zu einer Quantenwelt ohne Gravitation, deren Gesetze nur auf dem Rand dieser Welt gelten. Zumindest in einem solchen Universum können Schwarze Löcher als reine Quantenobjekte angesehen werden; und die Gravitation ist keine fundamentale Eigenschaft dieser Raumzeit, sondern nur ein Hologramm der Quantenwelt. Ein absolut fantastisches Ergebnis, um dessen Übertragung auf das reale Universum die Fachwelt ringt.

Und es war diese Entdeckung, die Hawking dazu gezwungen hatte, letztlich zu akzeptieren, dass Information wohl doch ihren Weg wieder aus den Schwarzen Löchern findet – der Inhalt des eben erwähnten, verlorenen Buches ist der Welt also doch nicht abhandengekommen. In gut 300 Seiten hat es der Leser so von einer Einführung in die allgemeine Relativitätstheorie zu den Themen der aktuellen theoretischen Forschung geschafft. Ein großes Lob an die Wegbegleiter Cox und Forshaw, die dieses hervorragende Buch verfasst haben.

Einziger Kritikpunkt sind die Grafiken. Um die verschiedenen Linien in den Penrose-Diagrammen zu unterscheiden, sind Farben die richtige Wahl. Doch leider sind alle farbigen Grafiken auf wenigen Seiten in der Mitte des Buches versammelt und damit weit weg von dem Text, den sie illustrieren sollen. Um das zu kompensieren, sind zusätzlich Schwarz-Weiß-Versionen der Grafiken in den Fließtext eingebunden. So blättert man umständlich hin und her, um etwa hier eine orangefarbene Wellenlinie auszumachen oder dort einen blauen Ereignishorizont. Diese Sparmaßnahme des Verlages bleibt unverständlich. Außerdem sind die Abbildungen nur teilweise übersetzt – ganze Worte werden zwar auf Deutsch präsentiert, doch Abkürzungen wie »BH« (für »black hole«) wurden nicht ersetzt, auch wenn dies problemlos möglich gewesen wäre.

Dennoch ist dieses Werk höchst empfehlenswert. Es ist anspruchsvoll und auch nicht frei von Formeln. Aber wer bereit ist mitzudenken, wird üppig belohnt.

Kennen Sie schon …

Spektrum Kompakt - 11/2025 - Dunkle Energie - Auf Spurensuche im All

Spektrum Kompakt – Dunkle Energie - Auf Spurensuche im All

Trotz der atemberaubenden Bilder aus der Euclid-Mission und zahlreichen Messdaten steckt der Kosmos immer noch voller Geheimnisse. Das Zentrum vieler Fragen ist die Dunkle Energie. Wird sie schwächer oder bleibt sie konstant? Und könnte sie aus dem Inneren von Schwarzen Löchern stammen?

Spektrum der Wissenschaft - 4/2025 - Neue Gesetze für den Kosmos?

Spektrum der Wissenschaft – Neue Gesetze für den Kosmos?: Eine alternative Theorie stellt die Gravitation in Frage

Seit Jahrzehnten jagen Physiker der unsichtbaren Dunklen Materie nach – bisher erfolglos. Als alternative Theorie wird die »Modified Newtonian Dynamics«, kurz MOND, diskutiert. Sie stellt die Gesetze der Gravitation in Frage und sorgt für Zündstoff in der Kosmologie. Im Rahmen unserer Serie »Quantengravitation« erläutert der Physiker Manuel Hohmann die Theorie der teleparallelen Gravitation. Ihr zufolge können Raum und Zeit nicht nur gekrümmt, sondern auch anders verformt sein. Weitere Themen: Warum Spiegelorganismen große Risiken bergen und was Landwirte tun können, um Agrarböden zu schützen und zu erhalten.

Spektrum - Die Woche - 10/2025 - Was befindet sich auf der anderen Seite unserer Galaxis?

Spektrum - Die Woche – Was befindet sich auf der anderen Seite unserer Galaxis?

In dieser Ausgabe von »Spektrum - Die Woche« geht der Astronom Phil Plait der Frage nach, was sich auf der anderen Seite unserer Galaxis befindet. Faszinierende Erkenntnisse jenseits des galaktischen Zentrums und spannende Einblicke in die Welt der Astronomie.

Spektrum Kompakt – Dunkle Energie - Auf Spurensuche im All

Trotz der atemberaubenden Bilder aus der Euclid-Mission und zahlreichen Messdaten steckt der Kosmos immer noch voller Geheimnisse. Das Zentrum vieler Fragen ist die Dunkle Energie. Wird sie schwächer oder bleibt sie konstant? Und könnte sie aus dem Inneren von Schwarzen Löchern stammen?

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.