Hemmes mathematische Rätsel: Wie lässt sich die Größe des Winkels bestimmen?
Die Strecke PQ ist die Projektion des Inkreises eines rechtwinkligen Dreiecks ABC auf die Hypotenuse AB. Wie groß ist der Winkel PCQ?
Ist M der Mittelpunkt des Inkreises, so sind die beiden Dreiecke MRP und CTM deckungsgleich. Folglich ist MC = MP. Analog dazu ist MC = MQ. Damit ist M auch der Mittelpunkt des Umkreises des Dreiecks QCP. Da die beiden Dreiecke MRP und QSM rechtwinklig und gleichschenklig sind, hat der Winkel PMQ eine Größe von 90°. Er ist der Mittelpunktswinkel über die Umkreissehne PQ. Hingegen ist der Winkel PCQ ein Umfangswinkel über diese Sehne und deshalb halb so groß. Folglich hat der Winkel PCQ eine Größe von 45°.
Schreiben Sie uns!
1 Beitrag anzeigen